Medium
Given two integers n and k, split the number n into exactly k positive integers such that the product of these integers is equal to n.
Return any one split in which the maximum difference between any two numbers is minimized. You may return the result in any order.
Example 1:
Input: n = 100, k = 2
Output: [10,10]
Explanation:
The split [10, 10] yields 10 * 10 = 100 and a max-min difference of 0, which is minimal.
Example 2:
Input: n = 44, k = 3
Output: [2,2,11]
Explanation:
[1, 1, 44] yields a difference of 43[1, 2, 22] yields a difference of 21[1, 4, 11] yields a difference of 10[2, 2, 11] yields a difference of 9Therefore, [2, 2, 11] is the optimal split with the smallest difference 9.
Constraints:
4 <= n <= 1052 <= k <= 5k is strictly less than the total number of positive divisors of n.import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class Solution {
private int kGlobal;
private int bestDiff = Integer.MAX_VALUE;
private List<Integer> bestList = new ArrayList<>();
private final List<Integer> current = new ArrayList<>();
public int[] minDifference(int n, int k) {
kGlobal = k;
dfs(n, 1, 0);
int[] ans = new int[bestList.size()];
for (int i = 0; i < bestList.size(); i++) {
ans[i] = bestList.get(i);
}
return ans;
}
private void dfs(int rem, int start, int depth) {
if (depth == kGlobal - 1) {
if (rem >= start) {
current.add(rem);
evaluate();
current.remove(current.size() - 1);
}
return;
}
List<Integer> divs = getDivisors(rem);
for (int d : divs) {
if (d < start) {
continue;
}
current.add(d);
dfs(rem / d, d, depth + 1);
current.remove(current.size() - 1);
}
}
private void evaluate() {
int mn = Integer.MAX_VALUE;
int mx = Integer.MIN_VALUE;
for (int v : current) {
mn = Math.min(mn, v);
mx = Math.max(mx, v);
}
int diff = mx - mn;
if (diff < bestDiff) {
bestDiff = diff;
bestList = new ArrayList<>(current);
}
}
private List<Integer> getDivisors(int x) {
List<Integer> small = new ArrayList<>();
List<Integer> large = new ArrayList<>();
for (int i = 1; i * (long) i <= x; i++) {
if (x % i == 0) {
small.add(i);
if (i != x / i) {
large.add(x / i);
}
}
}
Collections.reverse(large);
small.addAll(large);
return small;
}
}