Easy
You are given an integer n
.
Return the concatenation of the hexadecimal representation of n2
and the hexatrigesimal representation of n3
.
A hexadecimal number is defined as a base-16 numeral system that uses the digits 0 – 9
and the uppercase letters A - F
to represent values from 0 to 15.
A hexatrigesimal number is defined as a base-36 numeral system that uses the digits 0 – 9
and the uppercase letters A - Z
to represent values from 0 to 35.
Example 1:
Input: n = 13
Output: “A91P1”
Explanation:
n2 = 13 * 13 = 169
. In hexadecimal, it converts to (10 * 16) + 9 = 169
, which corresponds to "A9"
.n3 = 13 * 13 * 13 = 2197
. In hexatrigesimal, it converts to (1 * 362) + (25 * 36) + 1 = 2197
, which corresponds to "1P1"
."A9" + "1P1" = "A91P1"
.Example 2:
Input: n = 36
Output: “5101000”
Explanation:
n2 = 36 * 36 = 1296
. In hexadecimal, it converts to (5 * 162) + (1 * 16) + 0 = 1296
, which corresponds to "510"
.n3 = 36 * 36 * 36 = 46656
. In hexatrigesimal, it converts to (1 * 363) + (0 * 362) + (0 * 36) + 0 = 46656
, which corresponds to "1000"
."510" + "1000" = "5101000"
.Constraints:
1 <= n <= 1000
public class Solution {
public String concatHex36(int n) {
int t = n * n;
int k;
StringBuilder st = new StringBuilder();
StringBuilder tmp = new StringBuilder();
while (t > 0) {
k = t % 16;
t = t / 16;
if (k <= 9) {
tmp.append((char) ('0' + k));
} else {
tmp.append((char) ('A' + (k - 10)));
}
}
for (int i = tmp.length() - 1; i >= 0; i--) {
st.append(tmp.charAt(i));
}
tmp = new StringBuilder();
t = n * n * n;
while (t > 0) {
k = t % 36;
t = t / 36;
if (k <= 9) {
tmp.append((char) ('0' + k));
} else {
tmp.append((char) ('A' + (k - 10)));
}
}
for (int i = tmp.length() - 1; i >= 0; i--) {
st.append(tmp.charAt(i));
}
return st.toString();
}
}