Medium
You are given an integer array nums.
A special triplet is defined as a triplet of indices (i, j, k) such that:
0 <= i < j < k < n, where n = nums.lengthnums[i] == nums[j] * 2nums[k] == nums[j] * 2Return the total number of special triplets in the array.
Since the answer may be large, return it modulo 109 + 7.
Example 1:
Input: nums = [6,3,6]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 1, 2), where:
nums[0] = 6, nums[1] = 3, nums[2] = 6nums[0] = nums[1] * 2 = 3 * 2 = 6nums[2] = nums[1] * 2 = 3 * 2 = 6Example 2:
Input: nums = [0,1,0,0]
Output: 1
Explanation:
The only special triplet is (i, j, k) = (0, 2, 3), where:
nums[0] = 0, nums[2] = 0, nums[3] = 0nums[0] = nums[2] * 2 = 0 * 2 = 0nums[3] = nums[2] * 2 = 0 * 2 = 0Example 3:
Input: nums = [8,4,2,8,4]
Output: 2
Explanation:
There are exactly two special triplets:
(i, j, k) = (0, 1, 3)
nums[0] = 8, nums[1] = 4, nums[3] = 8nums[0] = nums[1] * 2 = 4 * 2 = 8nums[3] = nums[1] * 2 = 4 * 2 = 8(i, j, k) = (1, 2, 4)
nums[1] = 4, nums[2] = 2, nums[4] = 4nums[1] = nums[2] * 2 = 2 * 2 = 4nums[4] = nums[2] * 2 = 2 * 2 = 4Constraints:
3 <= n == nums.length <= 1050 <= nums[i] <= 105public class Solution {
public int specialTriplets(int[] nums) {
long ans = 0;
int[] sum = new int[200002];
int[] left = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
int curr = nums[i];
sum[curr]++;
left[i] = sum[curr * 2];
}
for (int i = 0; i < nums.length; i++) {
int curr = nums[i];
long leftCount = curr == 0 ? left[i] - 1 : left[i];
long rightCount = sum[curr * 2] - (long) left[i];
if (leftCount != 0 && rightCount != 0) {
ans += leftCount * rightCount;
}
}
return (int) (ans % 1000000007);
}
}