Medium
You are given two integer arrays x
and y
, each of length n
. You must choose three distinct indices i
, j
, and k
such that:
x[i] != x[j]
x[j] != x[k]
x[k] != x[i]
Your goal is to maximize the value of y[i] + y[j] + y[k]
under these conditions. Return the maximum possible sum that can be obtained by choosing such a triplet of indices.
If no such triplet exists, return -1.
Example 1:
Input: x = [1,2,1,3,2], y = [5,3,4,6,2]
Output: 14
Explanation:
i = 0
(x[i] = 1
, y[i] = 5
), j = 1
(x[j] = 2
, y[j] = 3
), k = 3
(x[k] = 3
, y[k] = 6
).x
are distinct. 5 + 3 + 6 = 14
is the maximum we can obtain. Hence, the output is 14.Example 2:
Input: x = [1,2,1,2], y = [4,5,6,7]
Output: -1
Explanation:
x
. Hence, the output is -1.Constraints:
n == x.length == y.length
3 <= n <= 105
1 <= x[i], y[i] <= 106
public class Solution {
public int maxSumDistinctTriplet(int[] x, int[] y) {
int index = -1;
int max = -1;
int sum = 0;
for (int i = 0; i < y.length; i++) {
if (y[i] > max) {
max = y[i];
index = i;
}
}
sum += max;
if (max == -1) {
return -1;
}
int index2 = -1;
max = -1;
for (int i = 0; i < y.length; i++) {
if (y[i] > max && x[i] != x[index]) {
max = y[i];
index2 = i;
}
}
sum += max;
if (max == -1) {
return -1;
}
max = -1;
for (int i = 0; i < y.length; i++) {
if (y[i] > max && x[i] != x[index] && x[i] != x[index2]) {
max = y[i];
}
}
if (max == -1) {
return -1;
}
sum += max;
return sum;
}
}