Easy
You are given an array of positive integers nums
.
An array arr
is called product equivalent if prod(arr) == lcm(arr) * gcd(arr)
, where:
prod(arr)
is the product of all elements of arr
.gcd(arr)
is the GCD of all elements of arr
.lcm(arr)
is the LCM of all elements of arr
.Return the length of the longest product equivalent subarray of nums
.
A subarray is a contiguous non-empty sequence of elements within an array.
The term gcd(a, b)
denotes the greatest common divisor of a
and b
.
The term lcm(a, b)
denotes the least common multiple of a
and b
.
Example 1:
Input: nums = [1,2,1,2,1,1,1]
Output: 5
Explanation:
The longest product equivalent subarray is [1, 2, 1, 1, 1]
, where prod([1, 2, 1, 1, 1]) = 2
, gcd([1, 2, 1, 1, 1]) = 1
, and lcm([1, 2, 1, 1, 1]) = 2
.
Example 2:
Input: nums = [2,3,4,5,6]
Output: 3
Explanation:
The longest product equivalent subarray is [3, 4, 5].
Example 3:
Input: nums = [1,2,3,1,4,5,1]
Output: 5
Constraints:
2 <= nums.length <= 100
1 <= nums[i] <= 10
public class Solution {
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
public int maxLength(int[] nums) {
int n = nums.length;
int maxL = 0;
for (int i = 0; i < n; i++) {
int currGCD = nums[i];
int currLCM = nums[i];
int currPro = nums[i];
for (int j = i + 1; j < n; j++) {
currPro *= nums[j];
currGCD = gcd(currGCD, nums[j]);
currLCM = lcm(currLCM, nums[j]);
if (currPro == currLCM * currGCD) {
maxL = Math.max(maxL, j - i + 1);
}
}
}
return maxL;
}
}