Easy
Given an array nums
of n
integers and an integer k
, determine whether there exist two adjacent subarrays of length k
such that both subarrays are strictly increasing. Specifically, check if there are two subarrays starting at indices a
and b
(a < b
), where:
nums[a..a + k - 1]
and nums[b..b + k - 1]
are strictly increasing.b = a + k
.Return true
if it is possible to find two such subarrays, and false
otherwise.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1], k = 3
Output: true
Explanation:
2
is [7, 8, 9]
, which is strictly increasing.5
is [2, 3, 4]
, which is also strictly increasing.true
.Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7], k = 5
Output: false
Constraints:
2 <= nums.length <= 100
1 < 2 * k <= nums.length
-1000 <= nums[i] <= 1000
import java.util.List;
public class Solution {
public boolean hasIncreasingSubarrays(List<Integer> nums, int k) {
int l = nums.size();
if (l < k * 2) {
return false;
}
for (int i = 0; i < l - 2 * k + 1; i++) {
if (check(i, k, nums) && check(i + k, k, nums)) {
return true;
}
}
return false;
}
private boolean check(int p, int k, List<Integer> nums) {
for (int i = p; i < p + k - 1; i++) {
if (nums.get(i) >= nums.get(i + 1)) {
return false;
}
}
return true;
}
}