Medium
You are given an array of integers nums
of size 3.
Return the maximum possible number whose binary representation can be formed by concatenating the binary representation of all elements in nums
in some order.
Note that the binary representation of any number does not contain leading zeros.
Example 1:
Input: nums = [1,2,3]
Output: 30
Explanation:
Concatenate the numbers in the order [3, 1, 2]
to get the result "11110"
, which is the binary representation of 30.
Example 2:
Input: nums = [2,8,16]
Output: 1296
Explanation:
Concatenate the numbers in the order [2, 8, 16]
to get the result "10100010000"
, which is the binary representation of 1296.
Constraints:
nums.length == 3
1 <= nums[i] <= 127
public class Solution {
private String result = "0";
public int maxGoodNumber(int[] nums) {
boolean[] visited = new boolean[nums.length];
StringBuilder sb = new StringBuilder();
solve(nums, visited, 0, sb);
int score = 0;
int val;
for (char c : result.toCharArray()) {
val = c - '0';
score *= 2;
score += val;
}
return score;
}
private void solve(int[] nums, boolean[] visited, int pos, StringBuilder sb) {
if (pos == nums.length) {
String val = sb.toString();
if ((result.length() == val.length() && result.compareTo(val) < 0)
|| val.length() > result.length()) {
result = val;
}
return;
}
String cur;
for (int i = 0; i < nums.length; ++i) {
if (visited[i]) {
continue;
}
visited[i] = true;
cur = Integer.toBinaryString(nums[i]);
sb.append(cur);
solve(nums, visited, pos + 1, sb);
sb.setLength(sb.length() - cur.length());
visited[i] = false;
}
}
}