Hard
You are given an integer n and a 2D array requirements, where requirements[i] = [endi, cnti] represents the end index and the inversion count of each requirement.
A pair of indices (i, j) from an integer array nums is called an inversion if:
i < j and nums[i] > nums[j]Return the number of permutations perm of [0, 1, 2, ..., n - 1] such that for all requirements[i], perm[0..endi] has exactly cnti inversions.
Since the answer may be very large, return it modulo 109 + 7.
Example 1:
Input: n = 3, requirements = [[2,2],[0,0]]
Output: 2
Explanation:
The two permutations are:
[2, 0, 1]
[2, 0, 1] has inversions (0, 1) and (0, 2).[2] has 0 inversions.[1, 2, 0]
[1, 2, 0] has inversions (0, 2) and (1, 2).[1] has 0 inversions.Example 2:
Input: n = 3, requirements = [[2,2],[1,1],[0,0]]
Output: 1
Explanation:
The only satisfying permutation is [2, 0, 1]:
[2, 0, 1] has inversions (0, 1) and (0, 2).[2, 0] has an inversion (0, 1).[2] has 0 inversions.Example 3:
Input: n = 2, requirements = [[0,0],[1,0]]
Output: 1
Explanation:
The only satisfying permutation is [0, 1]:
[0] has 0 inversions.[0, 1] has an inversion (0, 1).Constraints:
2 <= n <= 3001 <= requirements.length <= nrequirements[i] = [endi, cnti]0 <= endi <= n - 10 <= cnti <= 400i such that endi == n - 1.endi are unique.import java.util.Arrays;
public class Solution {
private static final int MOD = 1_000_000_007;
public int numberOfPermutations(int n, int[][] r) {
Arrays.sort(r, (o1, o2) -> o1[0] - o2[0]);
if (r[0][0] == 0 && r[0][1] > 0) {
return 0;
}
int ri = r[0][0] == 0 ? 1 : 0;
long a = 1;
long t;
int[][] m = new int[n][401];
m[0][0] = 1;
for (int i = 1; i < m.length; i++) {
m[i][0] = m[i - 1][0];
for (int j = 1; j <= i; j++) {
m[i][j] = (m[i][j] + m[i][j - 1]) % MOD;
m[i][j] = (m[i][j] + m[i - 1][j]) % MOD;
}
for (int j = i + 1; j <= r[ri][1]; j++) {
m[i][j] = (m[i][j] + m[i][j - 1]) % MOD;
m[i][j] = (m[i][j] + m[i - 1][j]) % MOD;
m[i][j] = (m[i][j] - m[i - 1][j - i - 1]);
if (m[i][j] < 0) {
m[i][j] += MOD;
}
}
if (r[ri][0] == i) {
t = m[i][r[ri][1]];
if (t == 0) {
return 0;
}
Arrays.fill(m[i], 0);
m[i][r[ri][1]] = 1;
a = (a * t) % MOD;
ri++;
}
}
return (int) a;
}
}