Hard
You are given an array nums
and an integer k
. You need to find a subarray of nums
such that the absolute difference between k
and the bitwise AND
of the subarray elements is as small as possible. In other words, select a subarray nums[l..r]
such that |k - (nums[l] AND nums[l + 1] ... AND nums[r])|
is minimum.
Return the minimum possible value of the absolute difference.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,2,4,5], k = 3
Output: 1
Explanation:
The subarray nums[2..3]
has AND
value 4, which gives the minimum absolute difference |3 - 4| = 1
.
Example 2:
Input: nums = [1,2,1,2], k = 2
Output: 0
Explanation:
The subarray nums[1..1]
has AND
value 2, which gives the minimum absolute difference |2 - 2| = 0
.
Example 3:
Input: nums = [1], k = 10
Output: 9
Explanation:
There is a single subarray with AND
value 1, which gives the minimum absolute difference |10 - 1| = 9
.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
1 <= k <= 109
public class Solution {
public int minimumDifference(int[] nums, int k) {
int res = Integer.MAX_VALUE;
for (int i = 0; i < nums.length; i++) {
res = Math.min(res, Math.abs(nums[i] - k));
for (int j = i - 1; j >= 0 && (nums[j] & nums[i]) != nums[j]; j--) {
nums[j] &= nums[i];
res = Math.min(res, Math.abs(nums[j] - k));
}
}
return res;
}
}