Medium
You are given a 2D matrix grid
of size m x n
. In one operation, you can change the value of any cell to any non-negative number. You need to perform some operations such that each cell grid[i][j]
is:
grid[i][j] == grid[i + 1][j]
(if it exists).grid[i][j] != grid[i][j + 1]
(if it exists).Return the minimum number of operations needed.
Example 1:
Input: grid = [[1,0,2],[1,0,2]]
Output: 0
Explanation:
All the cells in the matrix already satisfy the properties.
Example 2:
Input: grid = [[1,1,1],[0,0,0]]
Output: 3
Explanation:
The matrix becomes [[1,0,1],[1,0,1]]
which satisfies the properties, by doing these 3 operations:
grid[1][0]
to 1.grid[0][1]
to 0.grid[1][2]
to 1.Example 3:
Input: grid = [[1],[2],[3]]
Output: 2
Explanation:
There is a single column. We can change the value to 1 in each cell using 2 operations.
Constraints:
1 <= n, m <= 1000
0 <= grid[i][j] <= 9
public class Solution {
public int minimumOperations(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int[][] dp = new int[m][10];
int[][] cnt = new int[m][10];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; j++) {
cnt[j][grid[i][j]]++;
}
}
int first = Integer.MAX_VALUE;
int second = Integer.MAX_VALUE;
int firstId = -1;
int secondId = -1;
for (int i = 0; i < 10; i++) {
dp[0][i] = n - cnt[0][i];
if (dp[0][i] <= first) {
second = first;
first = dp[0][i];
secondId = firstId;
firstId = i;
} else if (dp[0][i] < second) {
second = dp[0][i];
secondId = i;
}
}
for (int j = 1; j < m; ++j) {
int lastFirstId = firstId;
int lastSecondId = secondId;
first = second = Integer.MAX_VALUE;
firstId = secondId = -1;
for (int i = 0; i < 10; ++i) {
int tmp;
int fix = n - cnt[j][i];
if (i == lastFirstId) {
tmp = fix + dp[j - 1][lastSecondId];
} else {
tmp = fix + dp[j - 1][lastFirstId];
}
if (tmp <= first) {
second = first;
first = tmp;
secondId = firstId;
firstId = i;
} else if (tmp < second) {
second = tmp;
secondId = i;
}
dp[j][i] = tmp;
}
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < 10; ++i) {
ans = Math.min(ans, dp[m - 1][i]);
}
return ans;
}
}