Hard
You are given a 0-indexed array nums
of non-negative integers, and two integers l
and r
.
Return the count of sub-multisets within nums
where the sum of elements in each subset falls within the inclusive range of [l, r]
.
Since the answer may be large, return it modulo 109 + 7
.
A sub-multiset is an unordered collection of elements of the array in which a given value x
can occur 0, 1, ..., occ[x]
times, where occ[x]
is the number of occurrences of x
in the array.
Note that:
0
.Example 1:
Input: nums = [1,2,2,3], l = 6, r = 6
Output: 1
Explanation: The only subset of nums that has a sum of 6 is {1, 2, 3}.
Example 2:
Input: nums = [2,1,4,2,7], l = 1, r = 5
Output: 7
Explanation: The subsets of nums that have a sum within the range [1, 5] are {1}, {2}, {4}, {2, 2}, {1, 2}, {1, 4}, and {1, 2, 2}.
Example 3:
Input: nums = [1,2,1,3,5,2], l = 3, r = 5
Output: 9
Explanation: The subsets of nums that have a sum within the range [3, 5] are {3}, {5}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {1, 1, 2}, {1, 1, 3}, and {1, 2, 2}.
Constraints:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
nums
does not exceed 2 * 104
.0 <= l <= r <= 2 * 104
import java.util.List;
public class Solution {
private static final int MOD = 1000000007;
private static final int MAX = 20001;
private static final IntMap INT_MAP = new IntMap();
public int countSubMultisets(List<Integer> nums, int l, int r) {
INT_MAP.clear();
INT_MAP.add(0);
int total = 0;
for (int num : nums) {
INT_MAP.add(num);
total += num;
}
if (total < l) {
return 0;
}
r = Math.min(r, total);
final int[] cnt = new int[r + 1];
cnt[0] = INT_MAP.map[0];
int sum = 0;
for (int i = 1; i < INT_MAP.size; i++) {
final int val = INT_MAP.vals[i];
final int count = INT_MAP.map[val];
if (count > 0) {
sum = Math.min(r, sum + val * count);
update(cnt, val, count, sum);
}
}
int res = 0;
for (int i = l; i <= r; i++) {
res = (res + cnt[i]) % MOD;
}
return res;
}
private static void update(final int[] cnt, final int n, final int count, final int sum) {
if (count == 1) {
for (int i = sum; i >= n; i--) {
cnt[i] = (cnt[i] + cnt[i - n]) % MOD;
}
} else {
for (int i = n; i <= sum; i++) {
cnt[i] = (cnt[i] + cnt[i - n]) % MOD;
}
final int max = (count + 1) * n;
for (int i = sum; i >= max; i--) {
cnt[i] = (cnt[i] - cnt[i - max] + MOD) % MOD;
}
}
}
private static final class IntMap {
final int[] map = new int[MAX];
final int[] vals = new int[MAX];
int size = 0;
void add(int v) {
if (map[v]++ == 0) {
vals[size++] = v;
}
}
void clear() {
for (int i = 0; i < size; i++) {
map[vals[i]] = 0;
}
size = 0;
}
}
}