Medium
You are given a 0-indexed integer array nums
. A subarray of nums
is called continuous if:
i
, i + 1
, …, j
be the indices in the subarray. Then, for each pair of indices i <= i1, i2 <= j
, 0 <= |nums[i1] - nums[i2]| <= 2
.Return the total number of continuous subarrays.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [5,4,2,4]
Output: 8
Explanation:
Continuous subarray of size 1: [5], [4], [2], [4].
Continuous subarray of size 2: [5,4], [4,2], [2,4].
Continuous subarray of size 3: [4,2,4].
Thereare no subarrys of size 4.
Total continuous subarrays = 4 + 3 + 1 = 8.
It can be shown that there are no more continuous subarrays.
Example 2:
Input: nums = [1,2,3]
Output: 6
Explanation:
Continuous subarray of size 1: [1], [2], [3].
Continuous subarray of size 2: [1,2], [2,3].
Continuous subarray of size 3: [1,2,3].
Total continuous subarrays = 3 + 2 + 1 = 6.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
public class Solution {
public long continuousSubarrays(int[] nums) {
long res = 1;
int lower = nums[0] - 2;
int higher = nums[0] + 2;
int j = 0;
for (int i = 1; i < nums.length; i++) {
if (nums[i] >= lower && nums[i] <= higher) {
lower = Math.max(lower, nums[i] - 2);
higher = Math.min(higher, nums[i] + 2);
} else {
j = i - 1;
lower = nums[i] - 2;
higher = nums[i] + 2;
while (j >= 0 && nums[j] >= lower && nums[j] <= higher) {
lower = Math.max(lower, nums[j] - 2);
higher = Math.min(higher, nums[j] + 2);
j--;
}
j++;
}
res += i - j + 1;
}
return res;
}
}