Easy
You are given a 0-indexed integer array nums
. A pair of indices i
, j
where 0 <= i < j < nums.length
is called beautiful if the first digit of nums[i]
and the last digit of nums[j]
are coprime.
Return the total number of beautiful pairs in nums
.
Two integers x
and y
are coprime if there is no integer greater than 1 that divides both of them. In other words, x
and y
are coprime if gcd(x, y) == 1
, where gcd(x, y)
is the greatest common divisor of x
and y
.
Example 1:
Input: nums = [2,5,1,4]
Output: 5
Explanation: There are 5 beautiful pairs in nums:
When i = 0 and j = 1: the first digit of nums[0] is 2, and the last digit of nums[1] is 5. We can confirm that 2 and 5 are coprime, since gcd(2,5) == 1.
When i = 0 and j = 2: the first digit of nums[0] is 2, and the last digit of nums[2] is 1. Indeed, gcd(2,1) == 1.
When i = 1 and j = 2: the first digit of nums[1] is 5, and the last digit of nums[2] is 1. Indeed, gcd(5,1) == 1.
When i = 1 and j = 3: the first digit of nums[1] is 5, and the last digit of nums[3] is 4. Indeed, gcd(5,4) == 1.
When i = 2 and j = 3: the first digit of nums[2] is 1, and the last digit of nums[3] is 4. Indeed, gcd(1,4) == 1.
Thus, we return 5.
Example 2:
Input: nums = [11,21,12]
Output: 2
Explanation: There are 2 beautiful pairs:
When i = 0 and j = 1: the first digit of nums[0] is 1, and the last digit of nums[1] is 1. Indeed, gcd(1,1) == 1.
When i = 0 and j = 2: the first digit of nums[0] is 1, and the last digit of nums[2] is 2. Indeed, gcd(1,2) == 1.
Thus, we return 2.
Constraints:
2 <= nums.length <= 100
1 <= nums[i] <= 9999
nums[i] % 10 != 0
public class Solution {
public int countBeautifulPairs(int[] nums) {
int beautifulPairs = 0;
int i = 0;
int j = 1;
while (i < nums.length - 1) {
int firstDigit = getFirstDigit(nums[i]);
while (j < nums.length) {
int lastDigit = nums[j] % 10;
boolean botDigitsAreEqualAndNot1 = firstDigit == lastDigit && firstDigit > 1;
boolean botDigitsAreDivisibleBy2 = firstDigit % 2 == 0 && lastDigit % 2 == 0;
boolean botDigitsAreDivisibleBy3 = firstDigit % 3 == 0 && lastDigit % 3 == 0;
if (!botDigitsAreEqualAndNot1
&& !botDigitsAreDivisibleBy2
&& !botDigitsAreDivisibleBy3) {
beautifulPairs++;
}
j++;
}
i++;
j = i + 1;
}
return beautifulPairs;
}
private int getFirstDigit(int num) {
int n = num;
int digit = 0;
while (n > 0) {
digit = n % 10;
n /= 10;
}
return digit;
}
}