LeetCode-in-Java

2748. Number of Beautiful Pairs

Easy

You are given a 0-indexed integer array nums. A pair of indices i, j where 0 <= i < j < nums.length is called beautiful if the first digit of nums[i] and the last digit of nums[j] are coprime.

Return the total number of beautiful pairs in nums.

Two integers x and y are coprime if there is no integer greater than 1 that divides both of them. In other words, x and y are coprime if gcd(x, y) == 1, where gcd(x, y) is the greatest common divisor of x and y.

Example 1:

Input: nums = [2,5,1,4]

Output: 5

Explanation: There are 5 beautiful pairs in nums:

When i = 0 and j = 1: the first digit of nums[0] is 2, and the last digit of nums[1] is 5. We can confirm that 2 and 5 are coprime, since gcd(2,5) == 1.

When i = 0 and j = 2: the first digit of nums[0] is 2, and the last digit of nums[2] is 1. Indeed, gcd(2,1) == 1.

When i = 1 and j = 2: the first digit of nums[1] is 5, and the last digit of nums[2] is 1. Indeed, gcd(5,1) == 1.

When i = 1 and j = 3: the first digit of nums[1] is 5, and the last digit of nums[3] is 4. Indeed, gcd(5,4) == 1.

When i = 2 and j = 3: the first digit of nums[2] is 1, and the last digit of nums[3] is 4. Indeed, gcd(1,4) == 1.

Thus, we return 5.

Example 2:

Input: nums = [11,21,12]

Output: 2

Explanation: There are 2 beautiful pairs:

When i = 0 and j = 1: the first digit of nums[0] is 1, and the last digit of nums[1] is 1. Indeed, gcd(1,1) == 1.

When i = 0 and j = 2: the first digit of nums[0] is 1, and the last digit of nums[2] is 2. Indeed, gcd(1,2) == 1.

Thus, we return 2.

Constraints:

Solution

public class Solution {
    public int countBeautifulPairs(int[] nums) {
        int beautifulPairs = 0;
        int i = 0;
        int j = 1;
        while (i < nums.length - 1) {
            int firstDigit = getFirstDigit(nums[i]);
            while (j < nums.length) {
                int lastDigit = nums[j] % 10;
                boolean botDigitsAreEqualAndNot1 = firstDigit == lastDigit && firstDigit > 1;
                boolean botDigitsAreDivisibleBy2 = firstDigit % 2 == 0 && lastDigit % 2 == 0;
                boolean botDigitsAreDivisibleBy3 = firstDigit % 3 == 0 && lastDigit % 3 == 0;

                if (!botDigitsAreEqualAndNot1
                        && !botDigitsAreDivisibleBy2
                        && !botDigitsAreDivisibleBy3) {
                    beautifulPairs++;
                }
                j++;
            }
            i++;
            j = i + 1;
        }
        return beautifulPairs;
    }

    private int getFirstDigit(int num) {
        int n = num;
        int digit = 0;
        while (n > 0) {
            digit = n % 10;
            n /= 10;
        }
        return digit;
    }
}