Hard
You are given two 0-indexed integer arrays nums1
and nums2
, each of length n
, and a 1-indexed 2D array queries
where queries[i] = [xi, yi]
.
For the ith
query, find the maximum value of nums1[j] + nums2[j]
among all indices j
(0 <= j < n)
, where nums1[j] >= xi
and nums2[j] >= yi
, or -1 if there is no j
satisfying the constraints.
Return an array answer
where answer[i]
is the answer to the ith
query.
Example 1:
Input: nums1 = [4,3,1,2], nums2 = [2,4,9,5], queries = [[4,1],[1,3],[2,5]]
Output: [6,10,7]
Explanation:
For the 1st query xi = 4
and yi = 1
, we can select index j = 0
since nums1[j] >= 4
and nums2[j] >= 1
. The sum nums1[j] + nums2[j]
is 6, and we can show that 6 is the maximum we can obtain.
For the 2nd query xi = 1
and yi = 3
, we can select index j = 2
since nums1[j] >= 1
and nums2[j] >= 3
. The sum nums1[j] + nums2[j]
is 10, and we can show that 10 is the maximum we can obtain.
For the 3rd query xi = 2
and yi = 5
, we can select index j = 3
since nums1[j] >= 2
and nums2[j] >= 5
. The sum nums1[j] + nums2[j]
is 7, and we can show that 7 is the maximum we can obtain.
Therefore, we return [6,10,7]
.
Example 2:
Input: nums1 = [3,2,5], nums2 = [2,3,4], queries = [[4,4],[3,2],[1,1]]
Output: [9,9,9]
Explanation: For this example, we can use index j = 2
for all the queries since it satisfies the constraints for each query.
Example 3:
Input: nums1 = [2,1], nums2 = [2,3], queries = [[3,3]]
Output: [-1]
Explanation: There is one query in this example with xi
= 3 and yi
= 3. For every index, j, either nums1[j] < xi
or nums2[j] < yi
. Hence, there is no solution.
Constraints:
nums1.length == nums2.length
n == nums1.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 109
1 <= queries.length <= 105
queries[i].length == 2
xi == queries[i][1]
yi == queries[i][2]
1 <= xi, yi <= 109
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.NavigableMap;
import java.util.TreeMap;
public class Solution {
private void update(NavigableMap<Integer, Integer> map, int num, int sum) {
Map.Entry<Integer, Integer> entry = map.floorEntry(num);
while (entry != null && entry.getValue() <= sum) {
map.remove(entry.getKey());
int x = entry.getKey();
entry = map.floorEntry(x);
}
entry = map.ceilingEntry(num);
if (entry == null || entry.getValue() < sum) {
map.put(num, sum);
}
}
private int queryVal(NavigableMap<Integer, Integer> map, int num) {
Map.Entry<Integer, Integer> entry = map.ceilingEntry(num);
if (entry == null) {
return -1;
}
return entry.getValue();
}
public int[] maximumSumQueries(int[] nums1, int[] nums2, int[][] queries) {
int n = nums1.length;
int m = queries.length;
List<int[]> v = new ArrayList<>();
for (int i = 0; i < n; i++) {
v.add(new int[] {nums1[i], nums2[i]});
}
v.sort(Comparator.comparingInt(a -> a[0]));
List<Integer> ind = new ArrayList<>();
for (int i = 0; i < m; i++) {
ind.add(i);
}
ind.sort((a, b) -> queries[b][0] - queries[a][0]);
TreeMap<Integer, Integer> values = new TreeMap<>();
int j = n - 1;
int[] ans = new int[m];
for (int i : ind) {
int a = queries[i][0];
int b = queries[i][1];
for (; j >= 0 && v.get(j)[0] >= a; j--) {
update(values, v.get(j)[1], v.get(j)[0] + v.get(j)[1]);
}
ans[i] = queryVal(values, b);
}
return ans;
}
}