Medium
You are given a 0-indexed integer array nums
and an integer p
. Find p
pairs of indices of nums
such that the maximum difference amongst all the pairs is minimized. Also, ensure no index appears more than once amongst the p
pairs.
Note that for a pair of elements at the index i
and j
, the difference of this pair is |nums[i] - nums[j]|
, where |x|
represents the absolute value of x
.
Return the minimum maximum difference among all p
pairs. We define the maximum of an empty set to be zero.
Example 1:
Input: nums = [10,1,2,7,1,3], p = 2
Output: 1
Explanation:
The first pair is formed from the indices 1 and 4, and the second pair is formed from the indices 2 and 5.
The maximum difference is max(|nums[1] - nums[4]|, |nums[2] - nums[5]|) = max(0, 1) = 1. Therefore, we return 1.
Example 2:
Input: nums = [4,2,1,2], p = 1
Output: 0
Explanation:
Let the indices 1 and 3 form a pair. The difference of that pair is |2 - 2| = 0, which is the minimum we can attain.
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= p <= (nums.length)/2
import java.util.Arrays;
public class Solution {
private boolean isPossible(int[] nums, int p, int diff) {
int n = nums.length;
int i = 1;
while (i < n) {
if (nums[i] - nums[i - 1] <= diff) {
p--;
i++;
}
i++;
}
return p <= 0;
}
public int minimizeMax(int[] nums, int p) {
int n = nums.length;
Arrays.sort(nums);
int left = 0;
int right = nums[n - 1] - nums[0];
int ans = right;
while (left <= right) {
int mid = left + (right - left) / 2;
if (isPossible(nums, p, mid)) {
ans = mid;
right = mid - 1;
} else {
left = mid + 1;
}
}
return ans;
}
}