Medium
You are given a 0-indexed integer array nums
of length n
.
You can perform the following operation as many times as you want:
i
that you haven’t picked before, and pick a prime p
strictly less than nums[i]
, then subtract p
from nums[i]
.Return true if you can make nums
a strictly increasing array using the above operation and false otherwise.
A strictly increasing array is an array whose each element is strictly greater than its preceding element.
Example 1:
Input: nums = [4,9,6,10]
Output: true
Explanation: In the first operation: Pick i = 0 and p = 3, and then subtract 3 from nums[0], so that nums becomes [1,9,6,10]. In the second operation: i = 1, p = 7, subtract 7 from nums[1], so nums becomes equal to [1,2,6,10]. After the second operation, nums is sorted in strictly increasing order, so the answer is true.
Example 2:
Input: nums = [6,8,11,12]
Output: true
Explanation: Initially nums is sorted in strictly increasing order, so we don’t need to make any operations.
Example 3:
Input: nums = [5,8,3]
Output: false
Explanation: It can be proven that there is no way to perform operations to make nums sorted in strictly increasing order, so the answer is false.
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
nums.length == n
import java.util.Arrays;
public class Solution {
private int[] primesUntil(int n) {
if (n < 2) {
return new int[0];
}
int[] primes = new int[200];
boolean[] composite = new boolean[n + 1];
primes[0] = 2;
int added = 1;
int i = 3;
while (i <= n) {
if (composite[i]) {
i += 2;
continue;
}
primes[added++] = i;
int j = i * i;
while (j <= n) {
composite[j] = true;
j += i;
}
i += 2;
}
return Arrays.copyOf(primes, added);
}
public boolean primeSubOperation(int[] nums) {
int max = 0;
for (int n : nums) {
max = Math.max(max, n);
}
int[] primes = primesUntil(max);
int prev = 0;
for (int n : nums) {
int pos = Arrays.binarySearch(primes, n - prev - 1);
if (pos == -1 && n <= prev) {
return false;
}
final int index;
if (pos == -1) {
index = 0;
} else {
index = pos < 0 ? primes[-pos - 2] : primes[pos];
}
prev = n - index;
}
return true;
}
}