Medium
You are given an array nums
of positive integers and a positive integer k
.
A subset of nums
is beautiful if it does not contain two integers with an absolute difference equal to k
.
Return the number of non-empty beautiful subsets of the array nums
.
A subset of nums
is an array that can be obtained by deleting some (possibly none) elements from nums
. Two subsets are different if and only if the chosen indices to delete are different.
Example 1:
Input: nums = [2,4,6], k = 2
Output: 4
Explanation:
The beautiful subsets of the array nums are: [2], [4], [6], [2, 6].
It can be proved that there are only 4 beautiful subsets in the array [2,4,6].
Example 2:
Input: nums = [1], k = 1
Output: 1
Explanation:
The beautiful subset of the array nums is [1].
It can be proved that there is only 1 beautiful subset in the array [1].
Constraints:
1 <= nums.length <= 20
1 <= nums[i], k <= 1000
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class Solution {
public int beautifulSubsets(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
for (int n : nums) {
map.put(n, map.getOrDefault(n, 0) + 1);
}
int res = 1;
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
if (!map.containsKey(entry.getKey() - k)) {
if (map.containsKey(entry.getKey() + k)) {
List<Integer> freq = new ArrayList<>();
int localKey = entry.getKey();
while (map.containsKey(localKey)) {
freq.add(map.get(localKey));
localKey += k;
}
res *= helper(freq);
} else {
res *= 1 << entry.getValue();
}
}
}
return res - 1;
}
private int helper(List<Integer> freq) {
int n = freq.size();
if (n == 1) {
return 1 << freq.get(0);
}
int[] dp = new int[n];
dp[0] = (1 << freq.get(0)) - 1;
dp[1] = (1 << freq.get(1)) - 1;
if (n == 2) {
return dp[0] + dp[1] + 1;
}
for (int i = 2; i < n; i++) {
if (i > 2) {
dp[i - 2] += dp[i - 3];
}
dp[i] = (dp[i - 2] + 1) * ((1 << freq.get(i)) - 1);
}
return dp[n - 1] + dp[n - 2] + dp[n - 3] + 1;
}
}