Hard
Given a 0-indexed integer array nums
of size n
containing all numbers from 1
to n
, return the number of increasing quadruplets.
A quadruplet (i, j, k, l)
is increasing if:
0 <= i < j < k < l < n
, andnums[i] < nums[k] < nums[j] < nums[l]
.Example 1:
Input: nums = [1,3,2,4,5]
Output: 2
Explanation:
When i = 0, j = 1, k = 2, and l = 3, nums[i] < nums[k] < nums[j] < nums[l].
When i = 0, j = 1, k = 2, and l = 4, nums[i] < nums[k] < nums[j] < nums[l]. There are no other quadruplets, so we return 2.
Example 2:
Input: nums = [1,2,3,4]
Output: 0
Explanation:
There exists only one quadruplet with i = 0, j = 1, k = 2, l = 3, but since nums[j] < nums[k], we return 0.
Constraints:
4 <= nums.length <= 4000
1 <= nums[i] <= nums.length
nums
are unique. nums
is a permutation.import java.util.Arrays;
public class Solution {
public long countQuadruplets(int[] nums) {
int n = nums.length;
long[] dp = new long[n];
Arrays.fill(dp, 0);
long ret = 0;
for (int i = 1; i < n; i++) {
int choice = 0;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
choice++;
ret += dp[j];
} else if (nums[i] < nums[j]) {
dp[j] += choice;
}
}
}
return ret;
}
}