Medium
You are given two integer arrays nums1
and nums2
of equal length n
and an integer k
. You can perform the following operation on nums1
:
i
and j
and increment nums1[i]
by k
and decrement nums1[j]
by k
. In other words, nums1[i] = nums1[i] + k
and nums1[j] = nums1[j] - k
.nums1
is said to be equal to nums2
if for all indices i
such that 0 <= i < n
, nums1[i] == nums2[i]
.
Return the minimum number of operations required to make nums1
equal to nums2
. If it is impossible to make them equal, return -1
.
Example 1:
Input: nums1 = [4,3,1,4], nums2 = [1,3,7,1], k = 3
Output: 2
Explanation: In 2 operations, we can transform nums1 to nums2.
1st operation: i = 2, j = 0. After applying the operation, nums1 = [1,3,4,4].
2nd operation: i = 2, j = 3. After applying the operation, nums1 = [1,3,7,1]. One can prove that it is impossible to make arrays equal in fewer operations.
Example 2:
Input: nums1 = [3,8,5,2], nums2 = [2,4,1,6], k = 1
Output: -1
Explanation: It can be proved that it is impossible to make the two arrays equal.
Constraints:
n == nums1.length == nums2.length
2 <= n <= 105
0 <= nums1[i], nums2[j] <= 109
0 <= k <= 105
import java.util.Arrays;
public class Solution {
public long minOperations(int[] nums1, int[] nums2, int k) {
int n = nums1.length;
long pcnt = 0;
long ncnt = 0;
if (k == 0) {
if (Arrays.equals(nums1, nums2)) {
return 0;
} else {
return -1;
}
}
for (int i = 0; i < n; i++) {
int tp = nums1[i] - nums2[i];
if (tp % k != 0) {
return -1;
}
if (tp > 0) {
pcnt += tp;
} else if (tp < 0) {
ncnt += tp;
}
}
if (pcnt + ncnt != 0) {
return -1;
}
return pcnt / k;
}
}