Hard
You are given an array nums
consisting of positive integers and an integer k
.
Partition the array into two ordered groups such that each element is in exactly one group. A partition is called great if the sum of elements of each group is greater than or equal to k
.
Return the number of distinct great partitions. Since the answer may be too large, return it modulo 109 + 7
.
Two partitions are considered distinct if some element nums[i]
is in different groups in the two partitions.
Example 1:
Input: nums = [1,2,3,4], k = 4
Output: 6
Explanation: The great partitions are: ([1,2,3], [4]), ([1,3], [2,4]), ([1,4], [2,3]), ([2,3], [1,4]), ([2,4], [1,3]) and ([4], [1,2,3]).
Example 2:
Input: nums = [3,3,3], k = 4
Output: 0
Explanation: There are no great partitions for this array.
Example 3:
Input: nums = [6,6], k = 2
Output: 2
Explanation: We can either put nums[0] in the first partition or in the second partition. The great partitions will be ([6], [6]) and ([6], [6]).
Constraints:
1 <= nums.length, k <= 1000
1 <= nums[i] <= 109
public class Solution {
private static final int MOD = 1000000007;
public int countPartitions(int[] nums, int k) {
// edge cases
int n = nums.length;
long sum = 0;
for (int num : nums) {
sum += num;
}
if (sum < 2L * k) {
return 0;
}
// normal cases
int[] dp = new int[k];
dp[0] = 1;
for (int num : nums) {
for (int i = k - 1; i >= num; i--) {
dp[i] = (dp[i] + dp[i - num]) % MOD;
}
}
int smaller = 0;
for (int i = 0; i < k; i++) {
smaller = (smaller + dp[i]) % MOD;
}
return (pow(2, n) - (smaller * 2) % MOD + MOD) % MOD;
}
private int pow(long num, int pow) {
long result = 1;
while (pow != 0) {
if (pow % 2 == 1) {
result = (result * num) % MOD;
}
pow /= 2;
num = (num * num) % MOD;
}
return (int) result;
}
}