Medium
There is an undirected graph consisting of n
nodes numbered from 0
to n - 1
. You are given a 0-indexed integer array vals
of length n
where vals[i]
denotes the value of the ith
node.
You are also given a 2D integer array edges
where edges[i] = [ai, bi]
denotes that there exists an undirected edge connecting nodes ai
and bi.
A star graph is a subgraph of the given graph having a center node containing 0
or more neighbors. In other words, it is a subset of edges of the given graph such that there exists a common node for all edges.
The image below shows star graphs with 3
and 4
neighbors respectively, centered at the blue node.
The star sum is the sum of the values of all the nodes present in the star graph.
Given an integer k
, return the maximum star sum of a star graph containing at most k
edges.
Example 1:
Input: vals = [1,2,3,4,10,-10,-20], edges = [[0,1],[1,2],[1,3],[3,4],[3,5],[3,6]], k = 2
Output: 16
Explanation: The above diagram represents the input graph.
The star graph with the maximum star sum is denoted by blue.
It is centered at 3 and includes its neighbors 1 and 4. It can be shown it is not possible to get a star graph with a sum greater than 16.
Example 2:
Input: vals = [-5], edges = [], k = 0
Output: -5
Explanation: There is only one possible star graph, which is node 0 itself. Hence, we return -5.
Constraints:
n == vals.length
1 <= n <= 105
-104 <= vals[i] <= 104
0 <= edges.length <= min(n * (n - 1) / 2
, 105)
edges[i].length == 2
0 <= ai, bi <= n - 1
ai != bi
0 <= k <= n - 1
import java.util.PriorityQueue;
@SuppressWarnings("unchecked")
public class Solution {
private PriorityQueue<Integer>[] graphNodeIdToNodeValues;
public int maxStarSum(int[] nodeValues, int[][] edges, int maxNumberOfEdges) {
final int totalNodes = nodeValues.length;
graphNodeIdToNodeValues = new PriorityQueue[totalNodes];
for (int i = 0; i < totalNodes; ++i) {
graphNodeIdToNodeValues[i] = new PriorityQueue<>();
}
for (int[] edge : edges) {
addEdgeEndingWithValueOfNode(nodeValues, edge[0], edge[1], maxNumberOfEdges);
addEdgeEndingWithValueOfNode(nodeValues, edge[1], edge[0], maxNumberOfEdges);
}
return calculateMaxStarSum(nodeValues, totalNodes);
}
private void addEdgeEndingWithValueOfNode(
int[] nodeValues, int fromNode, int toNode, int maxNumberOfEdges) {
if (nodeValues[toNode] > 0 && graphNodeIdToNodeValues[fromNode].size() < maxNumberOfEdges) {
graphNodeIdToNodeValues[fromNode].add(nodeValues[toNode]);
} else if (!graphNodeIdToNodeValues[fromNode].isEmpty()
&& graphNodeIdToNodeValues[fromNode].peek() < nodeValues[toNode]) {
graphNodeIdToNodeValues[fromNode].poll();
graphNodeIdToNodeValues[fromNode].add(nodeValues[toNode]);
}
}
private int calculateMaxStarSum(int[] nodeValues, int totalNodes) {
int maxStarSum = Integer.MIN_VALUE;
for (int i = 0; i < totalNodes; ++i) {
int sum = nodeValues[i];
for (int value : graphNodeIdToNodeValues[i]) {
sum += value;
}
maxStarSum = Math.max(maxStarSum, sum);
}
return maxStarSum;
}
}