Easy
Given a positive integer n
, find the pivot integer x
such that:
1
and x
inclusively equals the sum of all elements between x
and n
inclusively.Return the pivot integer x
. If no such integer exists, return -1
. It is guaranteed that there will be at most one pivot index for the given input.
Example 1:
Input: n = 8
Output: 6
Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21.
Example 2:
Input: n = 1
Output: 1
Explanation: 1 is the pivot integer since: 1 = 1.
Example 3:
Input: n = 4
Output: -1
Explanation: It can be proved that no such integer exist.
Constraints:
1 <= n <= 1000
public class Solution {
public int pivotInteger(int n) {
if (n == 0 || n == 1) {
return n;
}
int sum = 0;
for (int i = 1; i <= n; i++) {
sum += i;
}
int ad = 0;
for (int i = 1; i <= n; i++) {
ad += i - 1;
sum -= i;
if (sum == ad) {
return i;
}
}
return -1;
}
}