Medium
You are given an m x n
integer matrix grid
.
We define an hourglass as a part of the matrix with the following form:
Return the maximum sum of the elements of an hourglass.
Note that an hourglass cannot be rotated and must be entirely contained within the matrix.
Example 1:
Input: grid = [[6,2,1,3],[4,2,1,5],[9,2,8,7],[4,1,2,9]]
Output: 30
Explanation: The cells shown above represent the hourglass with the maximum sum: 6 + 2 + 1 + 2 + 9 + 2 + 8 = 30.
Example 2:
Input: grid = [[1,2,3],[4,5,6],[7,8,9]]
Output: 35
Explanation: There is only one hourglass in the matrix, with the sum: 1 + 2 + 3 + 5 + 7 + 8 + 9 = 35.
Constraints:
m == grid.length
n == grid[i].length
3 <= m, n <= 150
0 <= grid[i][j] <= 106
public class Solution {
public int maxSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int res = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (isHourGlass(i, j, m, n)) {
res = Math.max(res, calculate(i, j, grid));
} else {
// If we cannot form an hour glass from the current row anymore, just move to
// the next one
break;
}
}
}
return res;
}
// Check if an hour glass can be formed from the current position
private boolean isHourGlass(int r, int c, int m, int n) {
return r + 2 < m && c + 2 < n;
}
// Once we know an hourglass can be formed, just traverse the value
private int calculate(int r, int c, int[][] grid) {
int sum = 0;
// Traverse the bottom and the top row of the hour glass at the same time
for (int i = c; i <= c + 2; i++) {
sum += grid[r][i];
sum += grid[r + 2][i];
}
// Add the middle vlaue
sum += grid[r + 1][c + 1];
return sum;
}
}