Hard
You are given a 0-indexed 2D integer array transactions
, where transactions[i] = [costi, cashbacki]
.
The array describes transactions, where each transaction must be completed exactly once in some order. At any given moment, you have a certain amount of money
. In order to complete transaction i
, money >= costi
must hold true. After performing a transaction, money
becomes money - costi + cashbacki
.
Return the minimum amount of money
required before any transaction so that all of the transactions can be completed regardless of the order of the transactions.
Example 1:
Input: transactions = [[2,1],[5,0],[4,2]]
Output: 10
Explanation:
Starting with money = 10, the transactions can be performed in any order.
It can be shown that starting with money < 10 will fail to complete all transactions in some order.
Example 2:
Input: transactions = [[3,0],[0,3]]
Output: 3
Explanation:
If transactions are in the order [[3,0],[0,3]], the minimum money required to complete the transactions is 3.
If transactions are in the order [[0,3],[3,0]], the minimum money required to complete the transactions is 0.
Thus, starting with money = 3, the transactions can be performed in any order.
Constraints:
1 <= transactions.length <= 105
transactions[i].length == 2
0 <= costi, cashbacki <= 109
public class Solution {
public long minimumMoney(int[][] transactions) {
int max = 0;
long sum = 0;
for (int[] transaction : transactions) {
int diff = transaction[1] - transaction[0];
if (diff < 0) {
sum -= diff;
transaction[0] += diff;
}
max = Math.max(max, transaction[0]);
}
return max + sum;
}
}