Hard
You are given an m x n
binary matrix grid
where each cell is either 0
(empty) or 1
(occupied).
You are then given stamps of size stampHeight x stampWidth
. We want to fit the stamps such that they follow the given restrictions and requirements:
Return true
if it is possible to fit the stamps while following the given restrictions and requirements. Otherwise, return false
.
Example 1:
Input: grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3
Output: true
Explanation: We have two overlapping stamps (labeled 1 and 2 in the image) that are able to cover all the empty cells.
Example 2:
Input: grid = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], stampHeight = 2, stampWidth = 2
Output: false
Explanation: There is no way to fit the stamps onto all the empty cells without the stamps going outside the grid.
Constraints:
m == grid.length
n == grid[r].length
1 <= m, n <= 105
1 <= m * n <= 2 * 105
grid[r][c]
is either 0
or 1
.1 <= stampHeight, stampWidth <= 105
public class Solution {
private boolean canPaved(int[][] grid, int is, int js, int ie, int je) {
for (int i = is; i <= ie; i++) {
for (int j = js; j <= je; j++) {
if (grid[i][j] == 1) {
return true;
}
}
}
return false;
}
public boolean possibleToStamp(int[][] grid, int h, int w) {
int rl = grid[0].length;
for (int i = 0; i < grid.length; i++) {
int[] row = grid[i];
int prev = -1;
for (int j = 0; j < row.length; j++) {
if (row[j] == 0) {
if (j + 1 < rl
&& row[j + 1] == 1
&& j - w + 1 >= 0
&& i + 1 < grid.length
&& grid[i + 1][j] == 1
&& i - h + 1 >= 0
&& canPaved(grid, i - h + 1, j - w + 1, i, j)) {
return false;
}
continue;
}
if (1 < j - prev && j - prev <= w) {
return false;
}
prev = j;
}
if (1 < row.length - prev && row.length - prev <= w) {
return false;
}
}
for (int i = 0; i < rl; i++) {
int prev = -1;
for (int j = 0; j < grid.length; j++) {
if (grid[j][i] == 0) {
continue;
}
if (1 < j - prev && j - prev <= h) {
return false;
}
prev = j;
}
if (1 < grid.length - prev && grid.length - prev <= h) {
return false;
}
}
return true;
}
}