LeetCode-in-Java

2104. Sum of Subarray Ranges

Medium

You are given an integer array nums. The range of a subarray of nums is the difference between the largest and smallest element in the subarray.

Return the sum of all subarray ranges of nums.

A subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums = [1,2,3]

Output: 4

Explanation: The 6 subarrays of nums are the following:

[1], range = largest - smallest = 1 - 1 = 0

[2], range = 2 - 2 = 0

[3], range = 3 - 3 = 0

[1,2], range = 2 - 1 = 1

[2,3], range = 3 - 2 = 1

[1,2,3], range = 3 - 1 = 2

So the sum of all ranges is 0 + 0 + 0 + 1 + 1 + 2 = 4.

Example 2:

Input: nums = [1,3,3]

Output: 4

Explanation: The 6 subarrays of nums are the following:

[1], range = largest - smallest = 1 - 1 = 0

[3], range = 3 - 3 = 0

[3], range = 3 - 3 = 0

[1,3], range = 3 - 1 = 2

[3,3], range = 3 - 3 = 0

[1,3,3], range = 3 - 1 = 2

So the sum of all ranges is 0 + 0 + 0 + 2 + 0 + 2 = 4.

Example 3:

Input: nums = [4,-2,-3,4,1]

Output: 59

Explanation: The sum of all subarray ranges of nums is 59.

Constraints:

Follow-up: Could you find a solution with O(n) time complexity?

Solution

import java.util.ArrayDeque;
import java.util.Deque;

public class Solution {
    public long subArrayRanges(int[] nums) {
        int n = nums.length;
        long sum = 0;
        Deque<Integer> q = new ArrayDeque<>();

        q.add(-1);
        for (int i = 0; i <= n; i++) {
            while (q.peekLast() != -1 && (i == n || nums[q.peekLast()] <= nums[i])) {
                int cur = q.removeLast();
                int left = q.peekLast();
                int right = i;
                sum += (long) (cur - left) * (right - cur) * nums[cur];
            }
            q.add(i);
        }

        q.clear();
        q.add(-1);
        for (int i = 0; i <= n; i++) {
            while (q.peekLast() != -1 && (i == n || nums[q.peekLast()] >= nums[i])) {
                int cur = q.removeLast();
                int left = q.peekLast();
                int right = i;
                sum -= (long) (cur - left) * (right - cur) * nums[cur];
            }
            q.add(i);
        }
        return sum;
    }
}