LeetCode-in-Java

2048. Next Greater Numerically Balanced Number

Medium

An integer x is numerically balanced if for every digit d in the number x, there are exactly d occurrences of that digit in x.

Given an integer n, return the smallest numerically balanced number strictly greater than n.

Example 1:

Input: n = 1

Output: 22

Explanation:

22 is numerically balanced since:

It is also the smallest numerically balanced number strictly greater than 1.

Example 2:

Input: n = 1000

Output: 1333

Explanation:

1333 is numerically balanced since:

It is also the smallest numerically balanced number strictly greater than 1000. Note that 1022 cannot be the answer because 0 appeared more than 0 times.

Example 3:

Input: n = 3000

Output: 3133

Explanation:

3133 is numerically balanced since:

It is also the smallest numerically balanced number strictly greater than 3000.

Constraints:

Solution

public class Solution {
    public int nextBeautifulNumber(int n) {
        int[] arr = new int[] {0, 1, 2, 3, 4, 5, 6};
        boolean[] select = new boolean[7];
        int d = n == 0 ? 1 : (int) Math.log10(n) + 1;
        return solve(1, n, d, 0, select, arr);
    }

    private int solve(int i, int n, int d, int sz, boolean[] select, int[] arr) {
        if (sz > d + 1) {
            return Integer.MAX_VALUE;
        }
        if (i == select.length) {
            return sz >= d ? make(0, n, sz, select, arr) : Integer.MAX_VALUE;
        }
        int ans = solve(i + 1, n, d, sz, select, arr);
        select[i] = true;
        ans = Math.min(ans, solve(i + 1, n, d, sz + i, select, arr));
        select[i] = false;
        return ans;
    }

    private int make(int cur, int n, int end, boolean[] select, int[] arr) {
        if (end == 0) {
            return cur > n ? cur : Integer.MAX_VALUE;
        }

        int ans = Integer.MAX_VALUE;
        for (int j = 1; j < arr.length; j++) {
            if (!select[j] || arr[j] == 0) {
                continue;
            }
            --arr[j];
            ans = Math.min(make(10 * cur + j, n, end - 1, select, arr), ans);
            ++arr[j];
        }
        return ans;
    }
}