Hard
You wrote down many positive integers in a string called num. However, you realized that you forgot to add commas to seperate the different numbers. You remember that the list of integers was non-decreasing and that no integer had leading zeros.
Return the number of possible lists of integers that you could have written down to get the string num. Since the answer may be large, return it modulo 109 + 7.
Example 1:
Input: num = “327”
Output: 2
Explanation: You could have written down the numbers: 3, 27 327
Example 2:
Input: num = “094”
Output: 0
Explanation: No numbers can have leading zeros and all numbers must be positive.
Example 3:
Input: num = “0”
Output: 0
Explanation: No numbers can have leading zeros and all numbers must be positive.
Constraints:
1 <= num.length <= 3500num consists of digits '0' through '9'.public class Solution {
private int[][] lcp;
private long[][] dp;
private long[][] dps;
private String num;
private int n;
// Pre-compute The Longest Common Prefix sequence for each index in the string
private void calcLCP() {
for (int i = n - 1; i >= 0; i--) {
for (int j = n - 1; j >= 0; j--) {
if (num.charAt(i) == num.charAt(j)) {
lcp[i][j] = lcp[i + 1][j + 1] + 1;
}
}
}
}
// compare substring of same length for value
private boolean compare(int i, int j, int len) {
int common = lcp[i][j];
return common >= len || num.charAt(i + common) < num.charAt(j + common);
}
// calculates number of possible separations
private void calcResult() {
for (int i = n - 1; i >= 0; i--) {
// leading zero at current current index
if (num.charAt(i) == '0') {
continue;
}
// for substring starting at index i
long sum = 0;
for (int j = n - 1; j >= i; j--) {
long mod = 1000000007;
if (j == n - 1) {
// whole substring from index i is a valid possible list of integer (single
// integer in this case)
dp[i][j] = 1;
} else {
// first integer (i-j)
int len = j - i + 1;
// second integer start index
int st = j + 1;
// second integer end index
int ed = st + len - 1;
// equal length integers should be compared for value
dp[i][j] = 0;
if (ed < n && compare(i, st, len)) {
dp[i][j] = dp[st][ed];
}
// including the second integers possibilities with length greater than 1st one.
if (ed + 1 < n) {
// dps[st][ed+1] => dp[st][ed+1].......dp[st][n-1]
dp[i][j] = (dp[i][j] + dps[st][ed + 1]) % mod;
}
}
dps[i][j] = sum = (sum + dp[i][j]) % mod;
}
}
}
public int numberOfCombinations(String num) {
if (num.charAt(0) == '0') {
return 0;
}
n = num.length();
this.num = num;
lcp = new int[n + 1][n + 1];
dp = new long[n + 1][n + 1];
dps = new long[n + 1][n + 1];
calcLCP();
calcResult();
return (int) dps[0][0];
}
}