LeetCode-in-Java

1856. Maximum Subarray Min-Product

Medium

The min-product of an array is equal to the minimum value in the array multiplied by the array’s sum.

Given an array of integers nums, return the maximum min-product of any non-empty subarray of nums. Since the answer may be large, return it modulo 109 + 7.

Note that the min-product should be maximized before performing the modulo operation. Testcases are generated such that the maximum min-product without modulo will fit in a 64-bit signed integer.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [1,2,3,2]

Output: 14

Explanation: The maximum min-product is achieved with the subarray [2,3,2] (minimum value is 2). 2 * (2+3+2) = 2 * 7 = 14.

Example 2:

Input: nums = [2,3,3,1,2]

Output: 18

Explanation: The maximum min-product is achieved with the subarray [3,3] (minimum value is 3). 3 * (3+3) = 3 * 6 = 18.

Example 3:

Input: nums = [3,1,5,6,4,2]

Output: 60

Explanation: The maximum min-product is achieved with the subarray [5,6,4] (minimum value is 4). 4 * (5+6+4) = 4 * 15 = 60.

Constraints:

Solution

public class Solution {
    public int maxSumMinProduct(int[] nums) {
        int n = nums.length;
        int mod = (int) (1e9 + 7);
        if (n == 1) {
            return (int) (((long) nums[0] * (long) nums[0]) % mod);
        }
        int[] left = new int[n];
        left[0] = -1;
        for (int i = 1; i < n; i++) {
            int p = i - 1;
            while (p >= 0 && nums[p] >= nums[i]) {
                p = left[p];
            }
            left[i] = p;
        }
        int[] right = new int[n];
        right[n - 1] = n;
        for (int i = n - 2; i >= 0; i--) {
            int p = i + 1;
            while (p < n && nums[p] >= nums[i]) {
                p = right[p];
            }
            right[i] = p;
        }
        long res = 0L;
        long[] preSum = new long[n];
        preSum[0] = nums[0];
        for (int i = 1; i < n; i++) {
            preSum[i] = preSum[i - 1] + nums[i];
        }
        for (int i = 0; i < n; i++) {
            long sum =
                    left[i] == -1 ? preSum[right[i] - 1] : preSum[right[i] - 1] - preSum[left[i]];
            long cur = nums[i] * sum;
            res = Math.max(cur, res);
        }
        return (int) (res % mod);
    }
}