Hard
You are given two integers, m
and k
, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.
The MKAverage can be calculated using these steps:
m
you should consider the MKAverage to be -1
. Otherwise, copy the last m
elements of the stream to a separate container.k
elements and the largest k
elements from the container.Implement the MKAverage
class:
MKAverage(int m, int k)
Initializes the MKAverage object with an empty stream and the two integers m
and k
.void addElement(int num)
Inserts a new element num
into the stream.int calculateMKAverage()
Calculates and returns the MKAverage for the current stream rounded down to the nearest integer.Example 1:
Input [“MKAverage”, “addElement”, “addElement”, “calculateMKAverage”, “addElement”, “calculateMKAverage”, “addElement”, “addElement”, “addElement”, “calculateMKAverage”] [[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]
Output: [null, null, null, -1, null, 3, null, null, null, 5]
Explanation: MKAverage obj = new MKAverage(3, 1); obj.addElement(3); // current elements are [3] obj.addElement(1); // current elements are [3,1] obj.calculateMKAverage(); // return -1, because m = 3 and only 2 elements exist. obj.addElement(10); // current elements are [3,1,10] obj.calculateMKAverage(); // The last 3 elements are [3,1,10]. // After removing smallest and largest 1 element the container will be [3]. // The average of [3] equals 3/1 = 3, return 3 obj.addElement(5); // current elements are [3,1,10,5] obj.addElement(5); // current elements are [3,1,10,5,5] obj.addElement(5); // current elements are [3,1,10,5,5,5] obj.calculateMKAverage(); // The last 3 elements are [5,5,5]. // After removing smallest and largest 1 element the container will be `[5]. // The average of [5] equals 5/1 = 5, return 5`
Constraints:
3 <= m <= 105
1 <= k*2 < m
1 <= num <= 105
105
calls will be made to addElement
and calculateMKAverage
.import java.util.LinkedList;
import java.util.TreeSet;
public class MKAverage {
private final int capacity;
private final int boundary;
private final int[] nums;
private final TreeSet<Integer> numSet;
private final LinkedList<Integer> order;
public MKAverage(int m, int k) {
this.capacity = m;
this.boundary = k;
nums = new int[100001];
numSet = new TreeSet<>();
order = new LinkedList<>();
}
public void addElement(int num) {
if (order.size() == capacity) {
int numToDelete = order.removeFirst();
nums[numToDelete] = nums[numToDelete] - 1;
if (nums[numToDelete] == 0) {
numSet.remove(numToDelete);
}
}
nums[num]++;
numSet.add(num);
order.add(num);
}
public int calculateMKAverage() {
if (order.size() == capacity) {
int skipCount = boundary;
int numsCount = capacity - 2 * boundary;
int freq = capacity - 2 * boundary;
int sum = 0;
for (int num : numSet) {
int count = nums[num];
if (skipCount < 0) {
sum += num * Math.min(count, numsCount);
numsCount -= Math.min(count, numsCount);
} else {
skipCount -= count;
if (skipCount < 0) {
sum += num * Math.min(Math.abs(skipCount), numsCount);
numsCount -= Math.min(Math.abs(skipCount), numsCount);
}
}
if (numsCount == 0) {
break;
}
}
return sum / freq;
}
return -1;
}
}
/*
* Your MKAverage object will be instantiated and called as such:
* MKAverage obj = new MKAverage(m, k);
* obj.addElement(num);
* int param_2 = obj.calculateMKAverage();
*/