LeetCode-in-Java

1825. Finding MK Average

Hard

You are given two integers, m and k, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.

The MKAverage can be calculated using these steps:

  1. If the number of the elements in the stream is less than m you should consider the MKAverage to be -1. Otherwise, copy the last m elements of the stream to a separate container.
  2. Remove the smallest k elements and the largest k elements from the container.
  3. Calculate the average value for the rest of the elements rounded down to the nearest integer.

Implement the MKAverage class:

Example 1:

Input [“MKAverage”, “addElement”, “addElement”, “calculateMKAverage”, “addElement”, “calculateMKAverage”, “addElement”, “addElement”, “addElement”, “calculateMKAverage”] [[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]

Output: [null, null, null, -1, null, 3, null, null, null, 5]

Explanation: MKAverage obj = new MKAverage(3, 1); obj.addElement(3); // current elements are [3] obj.addElement(1); // current elements are [3,1] obj.calculateMKAverage(); // return -1, because m = 3 and only 2 elements exist. obj.addElement(10); // current elements are [3,1,10] obj.calculateMKAverage(); // The last 3 elements are [3,1,10]. // After removing smallest and largest 1 element the container will be [3]. // The average of [3] equals 3/1 = 3, return 3 obj.addElement(5); // current elements are [3,1,10,5] obj.addElement(5); // current elements are [3,1,10,5,5] obj.addElement(5); // current elements are [3,1,10,5,5,5] obj.calculateMKAverage(); // The last 3 elements are [5,5,5]. // After removing smallest and largest 1 element the container will be `[5]. // The average of [5] equals 5/1 = 5, return 5`

Constraints:

Solution

import java.util.LinkedList;
import java.util.TreeSet;

public class MKAverage {
    private final int capacity;
    private final int boundary;
    private final int[] nums;
    private final TreeSet<Integer> numSet;
    private final LinkedList<Integer> order;

    public MKAverage(int m, int k) {
        this.capacity = m;
        this.boundary = k;
        nums = new int[100001];
        numSet = new TreeSet<>();
        order = new LinkedList<>();
    }

    public void addElement(int num) {
        if (order.size() == capacity) {
            int numToDelete = order.removeFirst();
            nums[numToDelete] = nums[numToDelete] - 1;
            if (nums[numToDelete] == 0) {
                numSet.remove(numToDelete);
            }
        }
        nums[num]++;
        numSet.add(num);
        order.add(num);
    }

    public int calculateMKAverage() {
        if (order.size() == capacity) {
            int skipCount = boundary;
            int numsCount = capacity - 2 * boundary;
            int freq = capacity - 2 * boundary;
            int sum = 0;
            for (int num : numSet) {
                int count = nums[num];
                if (skipCount < 0) {
                    sum += num * Math.min(count, numsCount);
                    numsCount -= Math.min(count, numsCount);
                } else {
                    skipCount -= count;
                    if (skipCount < 0) {
                        sum += num * Math.min(Math.abs(skipCount), numsCount);
                        numsCount -= Math.min(Math.abs(skipCount), numsCount);
                    }
                }
                if (numsCount == 0) {
                    break;
                }
            }
            return sum / freq;
        }
        return -1;
    }
}

/*
 * Your MKAverage object will be instantiated and called as such:
 * MKAverage obj = new MKAverage(m, k);
 * obj.addElement(num);
 * int param_2 = obj.calculateMKAverage();
 */