Medium
A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix’s end. For example, the matrix diagonal starting from mat[2][0]
, where mat
is a 6 x 3
matrix, includes cells mat[2][0]
, mat[3][1]
, and mat[4][2]
.
Given an m x n
matrix mat
of integers, sort each matrix diagonal in ascending order and return the resulting matrix.
Example 1:
Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]]
Output: [[1,1,1,1],[1,2,2,2],[1,2,3,3]]
Example 2:
Input: mat = [[11,25,66,1,69,7],[23,55,17,45,15,52],[75,31,36,44,58,8],[22,27,33,25,68,4],[84,28,14,11,5,50]]
Output: [[5,17,4,1,52,7],[11,11,25,45,8,69],[14,23,25,44,58,15],[22,27,31,36,50,66],[84,28,75,33,55,68]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 100
1 <= mat[i][j] <= 100
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class Solution {
public int[][] diagonalSort(int[][] mat) {
int m = mat.length;
int n = mat[0].length;
int[][] sorted = new int[m][n];
for (int i = m - 1; i >= 0; i--) {
int iCopy = i;
List<Integer> list = new ArrayList<>();
for (int j = 0; j < n && iCopy < m; j++, iCopy++) {
list.add(mat[iCopy][j]);
}
Collections.sort(list);
iCopy = i;
for (int j = 0; j < n && iCopy < m; j++, iCopy++) {
sorted[iCopy][j] = list.get(j);
}
}
for (int j = n - 1; j > 0; j--) {
int jCopy = j;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < m && jCopy < n; i++, jCopy++) {
list.add(mat[i][jCopy]);
}
Collections.sort(list);
jCopy = j;
for (int i = 0; i < m && jCopy < n; i++, jCopy++) {
sorted[i][jCopy] = list.get(i);
}
}
return sorted;
}
}