Medium
Given an array of non-negative integers arr
, you are initially positioned at start
index of the array. When you are at index i
, you can jump to i + arr[i]
or i - arr[i]
, check if you can reach to any index with value 0.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [4,2,3,0,3,1,2], start = 5
Output: true
Explanation:
All possible ways to reach at index 3 with value 0 are:
index 5 -> index 4 -> index 1 -> index 3
index 5 -> index 6 -> index 4 -> index 1 -> index 3
Example 2:
Input: arr = [4,2,3,0,3,1,2], start = 0
Output: true
Explanation:
One possible way to reach at index 3 with value 0 is:
index 0 -> index 4 -> index 1 -> index 3
Example 3:
Input: arr = [3,0,2,1,2], start = 2
Output: false
Explanation: There is no way to reach at index 1 with value 0.
Constraints:
1 <= arr.length <= 5 * 104
0 <= arr[i] < arr.length
0 <= start < arr.length
public class Solution {
private boolean[] dp;
private boolean found = false;
public boolean canReach(int[] arr, int start) {
if (arr[start] == 0) {
return true;
}
dp = new boolean[arr.length];
dp[start] = true;
recurse(arr, start);
return found;
}
private void recurse(int[] arr, int index) {
if (found) {
return;
}
if (index - arr[index] >= 0 && !dp[index - arr[index]]) {
if (arr[index - arr[index]] == 0) {
found = true;
return;
}
dp[index - arr[index]] = true;
recurse(arr, index - arr[index]);
}
if (index + arr[index] < arr.length && !dp[index + arr[index]]) {
if (arr[index + arr[index]] == 0) {
found = true;
return;
}
dp[index + arr[index]] = true;
recurse(arr, index + arr[index]);
}
}
}