Easy
There is an m x n matrix that is initialized to all 0’s. There is also a 2D array indices where each indices[i] = [ri, ci] represents a 0-indexed location to perform some increment operations on the matrix.
For each location indices[i], do both of the following:
ri.ci.Given m, n, and indices, return the number of odd-valued cells in the matrix after applying the increment to all locations in indices.
Example 1:

Input: m = 2, n = 3, indices = [[0,1],[1,1]]
Output: 6
Explanation: Initial matrix = [[0,0,0],[0,0,0]].
After applying first increment it becomes [[1,2,1],[0,1,0]].
The final matrix is [[1,3,1],[1,3,1]], which contains 6 odd numbers.
Example 2:

Input: m = 2, n = 2, indices = [[1,1],[0,0]]
Output: 0
Explanation: Final matrix = [[2,2],[2,2]]. There are no odd numbers in the final matrix.
Constraints:
1 <= m, n <= 501 <= indices.length <= 1000 <= ri < m0 <= ci < nFollow up: Could you solve this in O(n + m + indices.length) time with only O(n + m) extra space?
public class Solution {
public int oddCells(int n, int m, int[][] indices) {
int[][] matrix = new int[n][m];
for (int[] index : indices) {
addOneToRow(matrix, index[0]);
addOneToColumn(matrix, index[1]);
}
int oddNumberCount = 0;
for (int[] ints : matrix) {
for (int j = 0; j < matrix[0].length; j++) {
if (ints[j] % 2 != 0) {
oddNumberCount++;
}
}
}
return oddNumberCount;
}
private void addOneToColumn(int[][] matrix, int columnIndex) {
for (int i = 0; i < matrix.length; i++) {
matrix[i][columnIndex] += 1;
}
}
private void addOneToRow(int[][] matrix, int rowIndex) {
for (int j = 0; j < matrix[0].length; j++) {
matrix[rowIndex][j] += 1;
}
}
}