LeetCode-in-Java

1080. Insufficient Nodes in Root to Leaf Paths

Medium

Given the root of a binary tree and an integer limit, delete all insufficient nodes in the tree simultaneously, and return the root of the resulting binary tree.

A node is insufficient if every root to leaf path intersecting this node has a sum strictly less than limit.

A leaf is a node with no children.

Example 1:

Input: root = [1,2,3,4,-99,-99,7,8,9,-99,-99,12,13,-99,14], limit = 1

Output: [1,2,3,4,null,null,7,8,9,null,14]

Example 2:

Input: root = [5,4,8,11,null,17,4,7,1,null,null,5,3], limit = 22

Output: [5,4,8,11,null,17,4,7,null,null,null,5]

Example 3:

Input: root = [1,2,-3,-5,null,4,null], limit = -1

Output: [1,null,-3,4]

Constraints:

Solution

import com_github_leetcode.TreeNode;

/*
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
public class Solution {
    public TreeNode sufficientSubset(TreeNode root, int limit) {
        return sufficientSubset(root, limit, 0, root.left == null && root.right == null) < limit
                ? null
                : root;
    }

    public int sufficientSubset(TreeNode root, int limit, int sum, boolean isLeaf) {
        if (root != null) {
            int leftSum =
                    sufficientSubset(
                            root.left,
                            limit,
                            sum + root.val,
                            root.left == null && root.right == null);
            int rightSum =
                    sufficientSubset(
                            root.right,
                            limit,
                            sum + root.val,
                            root.left == null && root.right == null);
            if (leftSum < limit) {
                root.left = null;
            }
            if (rightSum < limit) {
                root.right = null;
            }
            return Math.max(leftSum, rightSum);
        }
        return isLeaf ? sum : Integer.MIN_VALUE;
    }
}