Medium
You are given an m x n
grid
where each cell can have one of three values:
0
representing an empty cell,1
representing a fresh orange, or2
representing a rotten orange.Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1
.
Example 1:
Input: grid = [[2,1,1],[1,1,0],[0,1,1]]
Output: 4
Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]]
Output: -1
Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: grid = [[0,2]]
Output: 0
Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j]
is 0
, 1
, or 2
.import java.util.LinkedList;
import java.util.Queue;
public class Solution {
public int orangesRotting(int[][] grid) {
Queue<int[]> queue = new LinkedList<>();
int row = grid.length;
int col = grid[0].length;
int countActive = 0;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (grid[i][j] == 2) {
queue.add(new int[] {i, j});
}
if (grid[i][j] != 0) {
countActive++;
}
}
}
if (countActive == 0) {
return 0;
}
int countCurrent = 0;
int count = 0;
int[] dx = {0, 0, 1, -1};
int[] dy = {1, -1, 0, 0};
while (!queue.isEmpty()) {
int size = queue.size();
count += size;
for (int i = 0; i < size; i++) {
int[] arr = queue.poll();
for (int j = 0; j < 4; j++) {
int x = arr[0] + dx[j];
int y = arr[1] + dy[j];
if (x < 0 || y < 0 || x >= row || y >= col || grid[x][y] != 1) {
continue;
}
grid[x][y] = 2;
queue.add(new int[] {x, y});
}
}
if (!queue.isEmpty()) {
countCurrent++;
}
}
return countActive == count ? countCurrent : -1;
}
}