Easy
A permutation perm of n + 1 integers of all the integers in the range [0, n] can be represented as a string s of length n where:
s[i] == 'I' if perm[i] < perm[i + 1], ands[i] == 'D' if perm[i] > perm[i + 1].Given a string s, reconstruct the permutation perm and return it. If there are multiple valid permutations perm, return any of them.
Example 1:
Input: s = “IDID”
Output: [0,4,1,3,2]
Example 2:
Input: s = “III”
Output: [0,1,2,3]
Example 3:
Input: s = “DDI”
Output: [3,2,0,1]
Constraints:
1 <= s.length <= 105s[i] is either 'I' or 'D'.public class Solution {
public int[] diStringMatch(String s) {
int[] arr = new int[s.length() + 1];
int max = s.length();
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == 'D') {
arr[i] = max;
max--;
}
}
for (int i = s.length() - 1; i >= 0 && max > 0; i--) {
if (s.charAt(i) == 'I' && arr[i + 1] == 0) {
arr[i + 1] = max;
max--;
}
}
for (int i = 0; i < arr.length && max > 0; i++) {
if (arr[i] == 0) {
arr[i] = max;
max--;
}
}
return arr;
}
}