Medium
Given an array of integers arr, find the sum of min(b)
, where b
ranges over every (contiguous) subarray of arr
. Since the answer may be large, return the answer modulo 109 + 7
.
Example 1:
Input: arr = [3,1,2,4]
Output: 17
Explanation:
Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1. Sum is 17.
Example 2:
Input: arr = [11,81,94,43,3]
Output: 444
Constraints:
1 <= arr.length <= 3 * 104
1 <= arr[i] <= 3 * 104
public class Solution {
private static final int MOD = 1_000_000_007;
private int calculateRight(int i, int start, int[] right, int[] arr, int len) {
if (start >= len) {
return 0;
}
if (arr[start] < arr[i]) {
return 0;
}
return (1 + right[start] + calculateRight(i, start + right[start] + 1, right, arr, len))
% MOD;
}
private int calculateLeft(int i, int start, int[] left, int[] arr, int len) {
if (start < 0) {
return 0;
}
if (arr[start] <= arr[i]) {
return 0;
}
return (1 + left[start] + calculateLeft(i, start - left[start] - 1, left, arr, len)) % MOD;
}
public int sumSubarrayMins(int[] arr) {
int len = arr.length;
int[] right = new int[len];
int[] left = new int[len];
right[len - 1] = 0;
for (int i = len - 2; i >= 0; --i) {
right[i] = calculateRight(i, i + 1, right, arr, len);
}
left[0] = 0;
for (int i = 1; i < len; ++i) {
left[i] = calculateLeft(i, i - 1, left, arr, len);
}
int answer = 0;
for (int i = 0; i < len; ++i) {
long modl = 1_000_000_007;
answer += (int) (((((1 + left[i]) * (long) (1 + right[i])) % modl) * arr[i]) % modl);
answer %= MOD;
}
return answer;
}
}