Hard
You are given a string s
of length n
where s[i]
is either:
'D'
means decreasing, or'I'
means increasing.A permutation perm
of n + 1
integers of all the integers in the range [0, n]
is called a valid permutation if for all valid i
:
s[i] == 'D'
, then perm[i] > perm[i + 1]
, ands[i] == 'I'
, then perm[i] < perm[i + 1]
.Return the number of valid permutations perm
. Since the answer may be large, return it modulo 109 + 7
.
Example 1:
Input: s = “DID”
Output: 5
Explanation: The 5 valid permutations of (0, 1, 2, 3) are: (1, 0, 3, 2) (2, 0, 3, 1) (2, 1, 3, 0) (3, 0, 2, 1) (3, 1, 2, 0)
Example 2:
Input: s = “D”
Output: 1
Constraints:
n == s.length
1 <= n <= 200
s[i]
is either 'I'
or 'D'
.public class Solution {
public int numPermsDISequence(String s) {
int n = s.length();
int mod = (int) 1e9 + 7;
int[][] dp = new int[n + 1][n + 1];
for (int j = 0; j <= n; j++) {
dp[0][j] = 1;
}
for (int i = 0; i < n; i++) {
int cur = 0;
if (s.charAt(i) == 'I') {
for (int j = 0; j < n - i; j++) {
cur = (cur + dp[i][j]) % mod;
dp[i + 1][j] = cur;
}
} else {
for (int j = n - i - 1; j >= 0; j--) {
cur = (cur + dp[i][j + 1]) % mod;
dp[i + 1][j] = cur;
}
}
}
return dp[n][0];
}
}