Medium
You are given an integer array nums of length n which represents a permutation of all the integers in the range [0, n - 1].
The number of global inversions is the number of the different pairs (i, j) where:
0 <= i < j < nnums[i] > nums[j]The number of local inversions is the number of indices i where:
0 <= i < n - 1nums[i] > nums[i + 1]Return true if the number of global inversions is equal to the number of local inversions.
Example 1:
Input: nums = [1,0,2]
Output: true
Explanation: There is 1 global inversion and 1 local inversion.
Example 2:
Input: nums = [1,2,0]
Output: false
Explanation: There are 2 global inversions and 1 local inversion.
Constraints:
n == nums.length1 <= n <= 1050 <= nums[i] < nnums are unique.nums is a permutation of all the numbers in the range [0, n - 1].public class Solution {
/*
* from the above solution, we can tell that if we can find the minimum of A[j] where j >= i + 2,
* then we could quickly return false, so two steps:
* 1. remembering minimum
* 2. scanning from right to left
* <p>
* Time: O(n)
*/
public boolean isIdealPermutation(int[] nums) {
int min = nums.length;
for (int i = nums.length - 1; i >= 2; i--) {
min = Math.min(min, nums[i]);
if (nums[i - 2] > min) {
return false;
}
}
return true;
}
}