Medium
Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called “Ring Buffer”.
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Implementation the MyCircularQueue
class:
MyCircularQueue(k)
Initializes the object with the size of the queue to be k
.int Front()
Gets the front item from the queue. If the queue is empty, return -1
.int Rear()
Gets the last item from the queue. If the queue is empty, return -1
.boolean enQueue(int value)
Inserts an element into the circular queue. Return true
if the operation is successful.boolean deQueue()
Deletes an element from the circular queue. Return true
if the operation is successful.boolean isEmpty()
Checks whether the circular queue is empty or not.boolean isFull()
Checks whether the circular queue is full or not.You must solve the problem without using the built-in queue data structure in your programming language.
Example 1:
Input [“MyCircularQueue”, “enQueue”, “enQueue”, “enQueue”, “enQueue”, “Rear”, “isFull”, “deQueue”, “enQueue”, “Rear”] [[3], [1], [2], [3], [4], [], [], [], [4], []]
Output: [null, true, true, true, false, 3, true, true, true, 4]
Explanation: MyCircularQueue myCircularQueue = new MyCircularQueue(3); myCircularQueue.enQueue(1); // return True myCircularQueue.enQueue(2); // return True myCircularQueue.enQueue(3); // return True myCircularQueue.enQueue(4); // return False myCircularQueue.Rear(); // return 3 myCircularQueue.isFull(); // return True myCircularQueue.deQueue(); // return True myCircularQueue.enQueue(4); // return True myCircularQueue.Rear(); // return 4
Constraints:
1 <= k <= 1000
0 <= value <= 1000
3000
calls will be made to enQueue
, deQueue
, Front
, Rear
, isEmpty
, and isFull
.public class MyCircularQueue {
private final DoubleLinkedNode dumyHead = new DoubleLinkedNode(0);
private final int maxSize;
private int size = 0;
public MyCircularQueue(int k) {
this.maxSize = k;
dumyHead.left = dumyHead;
dumyHead.right = dumyHead;
}
public boolean enQueue(int value) {
if (size == maxSize) {
return false;
}
DoubleLinkedNode node = new DoubleLinkedNode(value);
DoubleLinkedNode right = dumyHead.right;
dumyHead.right = node;
node.left = dumyHead;
node.right = right;
right.left = node;
size++;
return true;
}
public boolean deQueue() {
if (size == 0) {
return false;
}
DoubleLinkedNode left = dumyHead.left;
dumyHead.left = left.left;
dumyHead.left.right = dumyHead;
size--;
return true;
}
public int rear() {
if (size == 0) {
return -1;
}
return dumyHead.right.val;
}
public int front() {
if (size == 0) {
return -1;
}
return dumyHead.left.val;
}
public boolean isEmpty() {
return size == 0;
}
public boolean isFull() {
return size == maxSize;
}
static class DoubleLinkedNode {
private final int val;
private DoubleLinkedNode left;
private DoubleLinkedNode right;
public DoubleLinkedNode(int val) {
this.val = val;
}
}
}
/*
* Your MyCircularQueue object will be instantiated and called as such:
* MyCircularQueue obj = new MyCircularQueue(k);
* boolean param_1 = obj.enQueue(value);
* boolean param_2 = obj.deQueue();
* int param_3 = obj.front();
* int param_4 = obj.rear();
* boolean param_5 = obj.isEmpty();
* boolean param_6 = obj.isFull();
*/