Hard
Given an integer array nums
and two integers lower
and upper
, return the number of range sums that lie in [lower, upper]
inclusive.
Range sum S(i, j)
is defined as the sum of the elements in nums
between indices i
and j
inclusive, where i <= j
.
Example 1:
Input: nums = [-2,5,-1], lower = -2, upper = 2
Output: 3
Explanation: The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
Example 2:
Input: nums = [0], lower = 0, upper = 0
Output: 1
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
-105 <= lower <= upper <= 105
public class Solution {
public int countRangeSum(int[] nums, int lower, int upper) {
int n = nums.length;
long[] sums = new long[n + 1];
for (int i = 0; i < n; i++) {
sums[i + 1] = sums[i] + nums[i];
}
return countWhileMergeSort(sums, 0, n + 1, lower, upper);
}
private int countWhileMergeSort(long[] sums, int start, int end, int lower, int upper) {
if (end - start <= 1) {
return 0;
}
int mid = (start + end) / 2;
int count =
countWhileMergeSort(sums, start, mid, lower, upper)
+ countWhileMergeSort(sums, mid, end, lower, upper);
int j = mid;
int k = mid;
int t = mid;
long[] cache = new long[end - start];
int r = 0;
for (int i = start; i < mid; i++) {
while (k < end && sums[k] - sums[i] < lower) {
k++;
}
while (j < end && sums[j] - sums[i] <= upper) {
j++;
}
while (t < end && sums[t] < sums[i]) {
cache[r++] = sums[t++];
}
cache[r] = sums[i];
count += j - k;
r++;
}
System.arraycopy(cache, 0, sums, start, t - start);
return count;
}
}