Medium
Given an integer array nums
, handle multiple queries of the following types:
nums
.nums
between indices left
and right
inclusive where left <= right
.Implement the NumArray
class:
NumArray(int[] nums)
Initializes the object with the integer array nums
.void update(int index, int val)
Updates the value of nums[index]
to be val
.int sumRange(int left, int right)
Returns the sum of the elements of nums
between indices left
and right
inclusive (i.e. nums[left] + nums[left + 1] + ... + nums[right]
).Example 1:
Input
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
Output: [null, 9, null, 8]
Explanation:
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // return 1 + 3 + 5 = 9
numArray.update(1, 2); // nums = [1, 2, 5]
numArray.sumRange(0, 2); // return 1 + 2 + 5 = 8
Constraints:
1 <= nums.length <= 3 * 104
-100 <= nums[i] <= 100
0 <= index < nums.length
-100 <= val <= 100
0 <= left <= right < nums.length
3 * 104
calls will be made to update
and sumRange
.public class NumArray {
private int[] tree;
private int[] nums;
public NumArray(int[] nums) {
tree = new int[nums.length + 1];
this.nums = nums;
// copy the array into the tree
System.arraycopy(nums, 0, tree, 1, nums.length);
for (int i = 1; i < tree.length; i++) {
int parent = i + (i & -i);
if (parent < tree.length) {
tree[parent] += tree[i];
}
}
}
public void update(int index, int val) {
int currValue = nums[index];
nums[index] = val;
index++;
while (index < tree.length) {
tree[index] = tree[index] - currValue + val;
index = index + (index & -index);
}
}
private int sum(int i) {
int sum = 0;
while (i > 0) {
sum += tree[i];
i -= (i & -i);
}
return sum;
}
public int sumRange(int left, int right) {
return sum(right + 1) - sum(left);
}
}
/*
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(index,val);
* int param_2 = obj.sumRange(left,right);
*/