Medium
A trie (pronounced as “try”) or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the string word
into the trie.boolean search(String word)
Returns true
if the string word
is in the trie (i.e., was inserted before), and false
otherwise.boolean startsWith(String prefix)
Returns true
if there is a previously inserted string word
that has the prefix prefix
, and false
otherwise.Example 1:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output: [null, null, true, false, true, null, true]
Explanation:
Trie trie = new Trie();
trie.insert("apple"); trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
and prefix
consist only of lowercase English letters.3 * 104
calls in total will be made to insert
, search
, and startsWith
.@SuppressWarnings("java:S1104")
public class Trie {
private final TrieNode root;
private boolean startWith;
private static class TrieNode {
// Initialize your data structure here.
public TrieNode[] children;
public boolean isWord;
public TrieNode() {
children = new TrieNode[26];
}
}
public Trie() {
root = new TrieNode();
}
// Inserts a word into the trie.
public void insert(String word) {
insert(word, root, 0);
}
private void insert(String word, TrieNode root, int idx) {
if (idx == word.length()) {
root.isWord = true;
return;
}
int index = word.charAt(idx) - 'a';
if (root.children[index] == null) {
root.children[index] = new TrieNode();
}
insert(word, root.children[index], idx + 1);
}
// Returns if the word is in the trie.
public boolean search(String word) {
return search(word, root, 0);
}
private boolean search(String word, TrieNode root, int idx) {
if (idx == word.length()) {
startWith = true;
return root.isWord;
}
int index = word.charAt(idx) - 'a';
if (root.children[index] == null) {
startWith = false;
return false;
}
return search(word, root.children[index], idx + 1);
}
// Returns if there is any word in the trie
// that starts with the given prefix.
public boolean startsWith(String prefix) {
search(prefix);
return startWith;
}
}
/*
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/
Time Complexity (Big O Time):
insert
method, the program iterates through the characters of the input word, and for each character, it follows the corresponding child node in the Trie.search
method, the program iterates through the characters of the input word, following the corresponding child nodes in the Trie.startsWith
method calls the search
method to find whether any word starts with the given prefix.Overall, the time complexity for insertion, search, and startsWith operations in the Trie is O(word.length()) or O(prefix.length()), depending on the length of the word or prefix being processed.
Space Complexity (Big O Space):
root
variable is a constant space requirement.startWith
variable is also constant space.The dominant factor in the space complexity is typically the TrieNode array, which is O(N), where N is the total number of characters in all inserted words.
In summary, the space complexity of this Trie implementation is O(N), and the time complexity for insertion, search, and startsWith operations is O(word.length()) or O(prefix.length()), depending on the length of the word or prefix being processed. 8