Hard
A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> ... -> sk such that:
si for 1 <= i <= k is in wordList. Note that beginWord does not need to be in wordList.sk == endWordGiven two words, beginWord and endWord, and a dictionary wordList, return the number of words in the shortest transformation sequence from beginWord to endWord, or 0 if no such sequence exists.
Example 1:
Input: beginWord = “hit”, endWord = “cog”, wordList = [“hot”,”dot”,”dog”,”lot”,”log”,”cog”]
Output: 5
Explanation: One shortest transformation sequence is “hit” -> “hot” -> “dot” -> “dog” -> cog”, which is 5 words long.
Example 2:
Input: beginWord = “hit”, endWord = “cog”, wordList = [“hot”,”dot”,”dog”,”lot”,”log”]
Output: 0
Explanation: The endWord “cog” is not in wordList, therefore there is no valid transformation sequence.
Constraints:
1 <= beginWord.length <= 10endWord.length == beginWord.length1 <= wordList.length <= 5000wordList[i].length == beginWord.lengthbeginWord, endWord, and wordList[i] consist of lowercase English letters.beginWord != endWordwordList are unique.import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class Solution {
public int ladderLength(String beginWord, String endWord, List<String> wordDict) {
Set<String> beginSet = new HashSet<>();
Set<String> endSet = new HashSet<>();
Set<String> wordSet = new HashSet<>(wordDict);
Set<String> visited = new HashSet<>();
if (!wordDict.contains(endWord)) {
return 0;
}
int len = 1;
int strLen = beginWord.length();
beginSet.add(beginWord);
endSet.add(endWord);
while (!beginSet.isEmpty() && !endSet.isEmpty()) {
if (beginSet.size() > endSet.size()) {
Set<String> temp = beginSet;
beginSet = endSet;
endSet = temp;
}
Set<String> tempSet = new HashSet<>();
for (String s : beginSet) {
char[] chars = s.toCharArray();
for (int i = 0; i < strLen; i++) {
char old = chars[i];
for (char j = 'a'; j <= 'z'; j++) {
chars[i] = j;
String temp = new String(chars);
if (endSet.contains(temp)) {
return len + 1;
}
if (!visited.contains(temp) && wordSet.contains(temp)) {
tempSet.add(temp);
visited.add(temp);
}
}
chars[i] = old;
}
}
beginSet = tempSet;
len++;
}
return 0;
}
}