Hard
Given two strings s
and t
, return the number of distinct subsequences of s
which equals t
.
A string’s subsequence is a new string formed from the original string by deleting some (can be none) of the characters without disturbing the remaining characters’ relative positions. (i.e., "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
It is guaranteed the answer fits on a 32-bit signed integer.
Example 1:
Input: s = “rabbbit”, t = “rabbit”
Output: 3
Explanation: As shown below, there are 3 ways you can generate “rabbit” from S. **rabb**b**it**
**ra**b**bbit**
**rab**b**bit**
Example 2:
Input: s = “babgbag”, t = “bag”
Output: 5
Explanation: As shown below, there are 5 ways you can generate “bag” from S. **ba**b**g**bag
**ba**bgba**g**
**b**abgb**ag**
ba**b**gb**ag**
babg**bag**
Constraints:
1 <= s.length, t.length <= 1000
s
and t
consist of English letters.public class Solution {
public int numDistinct(String text, String text2) {
if (text.length() < text2.length()) {
return 0;
}
if (text.length() == text2.length()) {
return (text.equals(text2) ? 1 : 0);
}
int move = text.length() - text2.length() + 2;
// Only finite number of character in s can occupy first position in T. Same applies for
// every character in T.
int[] dp = new int[move];
int j = 1;
int k = 1;
for (int i = 0; i < text2.length(); i++) {
boolean firstMatch = true;
for (; j < move; j++) {
if (text2.charAt(i) == text.charAt(i + j - 1)) {
if (firstMatch) {
// Keep track of first match. To avoid useless comparisons on next
// iteration.
k = j;
firstMatch = false;
}
if (i == 0) {
dp[j] = 1;
}
dp[j] += dp[j - 1];
} else {
dp[j] = dp[j - 1];
}
}
// No match found for current character of t in s. No point in checking others.
if (dp[move - 1] == 0) {
return 0;
}
j = k;
}
return dp[move - 1];
}
}